Time Flat Surfaces and the Monotonicity of the Spacetime Hawking Mass Ii
نویسندگان
چکیده
In this sequel paper we give a shorter, second proof of the monotonicity of the Hawking mass for time flat surfaces under spacelike uniformly area expanding flows in spacetimes that satisfy the dominant energy condition. We also include a third proof which builds on a known formula and describe a class of sufficient conditions of divergence type for the monotonicity of the Hawking mass. These flows of surfaces may have connections to the problem in general relativity of bounding the total mass of a spacetime from below by the quasi-local mass of spacelike 2-surfaces in the spacetime.
منابع مشابه
On the Penrose inequality for general horizons.
For asymptotically flat initial data of Einstein's equations satisfying an energy condition, we show that the Penrose inequality holds between the Arnowitt-Deser-Misner mass and the area of an outermost apparent horizon, if the data are suitably restricted. We prove this by generalizing Geroch's proof of monotonicity of the Hawking mass under a smooth inverse mean curvature flow, for data with ...
متن کاملOn the Penrose Inequality
We summarize results on the Penrose inequality bounding the ADM-mass or the Bondi mass in terms of the area of an outermost apparent horizon for asymptotically flat initial data of Einstein’s equations. We first recall the proof, due to Geroch and to Jang and Wald, of monotonicity of the Geroch-Hawking mass under a smooth inverse mean curvature flow for data with non-negative Ricci scalar, whic...
متن کاملExistence of constant mean curvature foliations in spacetimes with two-dimensional local symmetry
It is shown that in a class of maximal globally hyperbolic spacetimes admitting two local Killing vectors, the past (defined with respect to an appropriate time orientation) of any compact constant mean curvature hypersurface can be covered by a foliation of compact constant mean curvature hypersurfaces. Moreover, the mean curvature of the leaves of this foliation takes on arbitrarily negative ...
متن کاملOn the Behavior of Quasi-local Mass at the Infinity along Nearly round Surfaces
In this paper, we study the limiting behavior of the BrownYork mass and Hawking mass along nearly round surfaces at infinity of an asymptotically flat manifold. Nearly round surfaces can be defined in an intrinsic way. Our results show that the ADM mass of an asymptotically flat 3-manifold can be approximated by some geometric invariants of a family of nearly round surfaces which approach to in...
متن کاملThe Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates
In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014